Course Code	22MEMD2T3	M.Tech	I year	Semester	II
Course Category	Program Core	Branch	Machine Design	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Strength of Materials
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100

FINITE ELEMENT METHODS IN ENGINEERING

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Apply variational and weighted residual methods to solve differential equations.	L3	1
CO2	Analyze 1-D bar, Truss, beam and Frame problems using finite element method.	L4	2
CO3	Develop finite element formulations and solve 2-D structural problems using triangular and quadrilateral elements.	L4	3
CO4	Analyze Heat Transfer and vibration problems for frequencies and mode shapes.	L4	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	1			2			1		2	3	2
CO 2	3	3	1	1			2			1		2	3	2
CO 3	3	3	1	1			2			1		2	3	2
CO 4	3	3	1	1			2			1		2	3	2

Syllabus					
Unit	Contents	Mapped CO			
1	FORMULATION TECHNIQUES : Methodology, engineering problems and governing differential equations, variational methods-potential energy method, Raleigh Ritz method, strong and weak forms, weighted residual methods. FINITE ELEMENT METHOD : Concepts of discretization, types of elements, interpolation function, node numbering scheme, assembly and boundary conditions.	CO1			
2	 ANALYSIS OF BARS: Element shape functions, stiffness matrix, load vectors, determination of displacements, reaction, stresses, temperature effects. ANALYSIS OF TRUSSES: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. ANALYSIS OF BEAMS AND FRAMES: Element matrices, assembling of global stiffness matrix, solution for displacements, reaction, stresses, temperature effects. 	CO2			
3	TWO DIMENSIONAL PROBLEMS : Analysis of 2-D problems using constant strain triangle element, axi-symmetric formulations. ISOPARAMETRIC FORMULATIONS : Sub, iso and super parametric elements, four noded quadrilateral element, numerical integration – Gaussian Quadrature approach.	CO3			
4	 FINITE ELEMENTS IN STRUCTURAL DYNAMICS: Dynamic equations, eigen value problems, and their solution methods, simple problems. CONVERGENCE: Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, Pascal's triangle. ONE DIMENSIONAL SCALAR FIELD PROBLEMS: Heat transfer: equilibrium equations, heat conduction in plane walls, convection heat transfer in fins, finite element formulation, simple problems. 	CO4			

Learning Resources

Text Book(s):

- 1. 1. SS Rao, "The Finite Element Methods in Engineering", ButterworthHeinemann,5th Edition.
- 2. 2. Chandraputla, Ashok and Belegundu, "Introduction to Finite Elements in Engineering ", Prentice Hall,2011.

References:

- 1. Daryl L Logan, "A first course in finite element method", Cengage Learning. 5 th Edition
- 2. JN Reddy, "An introduction to Finite Element Method", McGrawHill, 4th Edition.
- 3. Chandraputla, Ashok and Belegundu, "Introduction to Finite Elements in Engineering ", Prentice Hall,2011.
- 4. C. S. Krishnamurthy, "Finite Element Analysis -Theory and Programming", Tata Mc Graw Hill,2nd Edition.

Course coordinator: